


LUCIA® 240/2M

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

LUCIA 240/2M										
Level	Load	Output	power	Mains voltage	Line Watt *1)				Thermal Dissipation	
				VAC	IAC	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.032	0.88	0	1	3	1
				120	0.027	0.77	0	1	3	1
				100	0.028	0.76	0	1	3	1
Power on, Idling				230	0.14	14.8	0	15	51	13
				120	0.21	13.4	0	13	46	12
				100	0.25	14.1	0	14	48	12
Pink Pseudo Noise (1/8)	16 Ω / Ch.	60	x 2	230	0.31	37.3	15	22	76	19
				120	0.48	35.1	15	20	69	17
				100	0.60	35.1	15	20	69	17
	8 Ω / Ch.	120	x 2	230	0.45	56.6	30	27	91	23
				120	0.71	54.6	30	25	84	21
				100	0.83	55.6	30	26	87	22
	4 Ω / Ch.	120	x 2	230	0.47	58.1	30	28	96	24
				120	0.75	57.1	30	27	92	23
				100	0.86	57.8	30	28	95	24
	2 Ω / Ch.	120	x 2	230	0.49	62.0	30	32	109	28
				120	0.77	59.3	30	29	100	25
				100	0.93	62.1	30	32	110	28

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

